BY: Mikkel Helweg, Business Development Manager and Terje Jensvik, Technical Manager Solution in Data Respons Solutions Norway.
Critical assignment communication is key
Within operative applications, critical mission communication – including critical machine-type communication (cMTC) – is crucial. This involves ensuring the necessary functionality, a high degree of robustness, security, shielding of data, and ensuring high uptimes across existing wireless carriers such as the IP-based LTE and 4G.
However, in line with increasing digitization, automation and autonomation, it is crucial that the military can also exploit new technologies such as fifth-generation mobile communication. That is to say, 5G is not a technology in itself but is a set of requirements, see 3GPP’s 5G-NR (New Radio) standard (release 15 and later).
High speeds and low latency on the 5G network
5G’s speed of 10 gigabits per second (see eMBB or Enhanced Mobile Broadband) is estimated to be 100 times faster than 4G. And the technology’s theoretical delay of just a few thousandths of a second (1 ms) is 400 times faster than the blink of an eye…
5G terminology likes to talk about URLLC (or Ultra-Reliable Low-Latency Communications) with regards to the above. The low delay is achieved among other things with the help of so-called Edge computing where data processing and data generation (systematic indicators, trends and performance data) is executed as close as possible to the endpoints, including sensors and effectors, where these can exchange data with one another locally with practically zero waiting time.
Separate “defence area” on the 5G network
With the help of Software-Defined Networking (SDN) and Network Function Virtualization (NFV), it is possible to assign private, specially adapted user areas – so-called “network slices” – to different sectors, industries and enterprises on the 5G core network. These areas are built on top of the underlying mobile network. They are central to 5G technology since it is not possible to combine all the capacities previously mentioned without extreme investments. For example, it is impossible to combine very low delay with massive area coverage (up to 1 million units per square kilometre, ref. massive machine-type communication; mMTC). The private slices are therefore adapted based on critical parameters for each sector or enterprise, or different defence applications.
For example, a private 5G “Defence Slice” with high, prioritized speed and low latency will simplify heavy end-to-end encryption using keys that can only be read by the recipients. This is what is being tested in the 5G Vertical Innovation Infrastructure (VINNI) project which the Armed Forces are participating in.
These sorts of private areas are also of interest for other key agencies in the public sector, regardless of whether these agencies are part of a national defence structure or not. It is, for example, an expectation that a dedicated 5G network slice will replace the current emergency network in Norway from 2027 (after the Norwegian government decided back in 2017 that the next generation emergency network – NGN – should be based on a commercial mobile network). This network then recognizes that the coupled unit belongs to the “emergency services slice” and prioritizes it over other network traffic and communication.